Navigation Doppler Lidar

Presented To:

New Frontiers Technology Workshop

06/01/2016

Farzin Amzajerdian
NASA Langley Research Center

SPONSORS:

- SMD/New Frontiers/Homesteader Program
- HEOMD/AES/Lander Technologies Project
- STMD/Fight Opportunities Program

Navigation Doppler Lidar (NDL)

- The NDL is a laser-based sensor capable of providing the necessary velocity and altitude measurements for planetary landing
- NDL Measures velocity and range along three different laser beams
- Simultaneous line-of-sight measurements are used to determine:
 - Velocity Vector (V)
 - Altitude relative to local ground (No IMU data required)

NDL Offers New Capabilities for Planetary Landing Missions

- GPS-deprived environment of space requires onboard sensors for vehicle position and velocity data (past landing missions used radars)
- NDL is a viable replacement for obsolete radar sensors
 - No current spaceflight-qualified COTS velocimeters following Mars Insight landing (using a spare Mars Phoenix sensor)
- NDL offers an order of magnitude higher precision than microwave radars and much higher data quality (low false alarms) while reducing required size, mass, and power
- NDL enables "well-controlled" descent, landing, and ascent maneuvers to within a few cm/sec
 - Reduced touchdown impact loads lower lander mass
 - Optimized fuel consumption lower mass and risk
- NDL enables "precision navigation" to the designated landing location

NDL can enable higher performance, lower risk, and lower cost landing capabilities

Extensive NDL Test History

Truck Tests

Gantry Tests

NDL Optical Head

Morpheus Flights: Closed-Loop Demonstration

NASA-KSC, 2014

Gen 3 NDL Development (FY2015 – FY2017)

ALHAT Prototype (Gen 2)

AES Lander Tech

- Max Velocity from 75 m/sec to 200 m/sec
- Max Range from 3 km to 4 km
- Reduced size and mass by 40%

- Integrate with LVS (COBALT instrument)
- Conduct ground and helicopter Test integrated

Xodiac

FOP

- Integrate COBALT into Masten vehicle
- Conduct open and closed-loop flights

COBALT (CoOperative Blending of Autonomous Landing Technologies)

New Frontiers Homesteader Project

- Reduce risk for the development of a spaceflight NDL sensor
- Build and test TRL 6 seed laser and fiber amplifier
- Integrate with NDL and conduct performance tests

NDL Development & Infusion Plan

Backup

Principle of NDL

NDL Real-Time Processor & System Controller

Gen 2 NDL used in Morpheus/ALHAT Tests 🛂

- Fully-autonomous operation
- Integrated real-time processors
- Subjected to thermal and vibration tests
- Helicopter and closed-loop Morpheus flight tests as an integrated sensor of the GN&C system

- All the lidar components are housed in the electronic chassis.
- Optical head consists of three transmit/receive lenses connected to the chassis via a long armored fiber optic cable.
- Optical head mounts rigidly to the body of the vehicle with a clear view of the ground while the electronic chassis may be installed anywhere on the vehicle.

Comparison of NDL and MSL Radar

Navigational Doppler Lidar Flight Unit

	MSL Radar	Gen 3 NDL	Flight NDL
Mass (kg)	26	15	13
Power (W)	120	90	75

- 35X higher velocity and altitude precision
- An order of magnitude higher data update rate
- 3 orders of magnitude tighter beams eliminating false alarms due to target clutter and terrain features
- 40% reduction in power, 50% in mass, and 60% in size

NDL Specifications

Parameter		Gen 2	Gen 3
LOS Velocity Error ^a		0.2 cm/sec	0.2 cm/sec
LOS Range Error ^a		30 cm	30 cm
Maximum LOS Range		2500 m	4000 m
Data Rate		20 Hz	20 Hz
	Electronic Chassis	44 x 38 x 16 cm	29 x 23 x 20 cm
Dimensions	Optical Head	34 x 33 x 21 cm	34 x 33 x 21 cm
Mass	Electronic Chassis	16.4 kg ^b	10 kg ^c
	Optical Head	5.2 kg	5 kg
Power (28 VDC)		95 W ^b	90 W ^c

- a. Errors do not include platform contributions (vibration and angular motions)
- b. Heatsink and fans module adds 4.9 kg and 55 W to ALHAT unit
- c. Heatsink and fans module adds 1.5 kg and 10 W to GEN 3 unit

Optical Head

Morpheus Flights: Closed-Loop Demonstration

NASA-KSC, 2014

NDL provided critical data for precision navigation and soft landing at the selected site

Morpheus/ALHAT Flight

https://www.youtube.com/watch?v=M3D9m5zhhF8

TRL 6 Qualification Tests

TEST	CONDITION	UNITS
High Temperature Storage	85 C, 2000 hrs	3
Low Temperature Storage	-40 C, 72 h	3
Thermal Cycling	-40 C to +85 C, 100 cycles	3
Actively Monitored Thermal	0 to 50 C, monitor power and	3
Cycling (not a Telcordia test)	wavelength @ 10 deg intervals, 3 cycles	
Thermal Shock	0 C to 100 C, 20 cycles	3
Mechanical Shock	500 G, 1 ms, 5 cycles/axis	3
Vibration	20 G, 20 to 2000 Hz	3

Compliance with vacuum and radiation requirements will be verified analytically

Gamma Radiation: 100 krad total dose at 25 C

• Vacuum: 1.5 x 10⁻⁵ Torr ambient pressure